Search results for "Saturated formation"
showing 6 items of 6 documents
On X-saturated formations of finite groups
2005
[EN] In the paper, a Frattini-like subgroup associated with a class X of simple groups is introduced and analysed. The corresponding X-saturated formations are exactly the X-local ones introduced by Förster. Our techniques are also very useful to highlight the properties and behaviour of omega-local formations. In fact, extensions and improvements of several results of Shemetkov are natural consequences of our study.
Saturated formations and products of connected subgroups
2011
Abstract For a non-empty class of groups C , two subgroups A and B of a group G are said to be C -connected if 〈 a , b 〉 ∈ C for all a ∈ A and b ∈ B . Given two sets π and ρ of primes, S π S ρ denotes the class of all finite soluble groups that are extensions of a normal π-subgroup by a ρ-group. It is shown that in a finite group G = A B , with A and B soluble subgroups, then A and B are S π S ρ -connected if and only if O ρ ( B ) centralizes A O π ( G ) / O π ( G ) , O ρ ( A ) centralizes B O π ( G ) / O π ( G ) and G ∈ S π ∪ ρ . Moreover, if in this situation A and B are in S π S ρ , then G is in S π S ρ . This result is then extended to a large family of saturated formations F , the so-c…
Languages associated with saturated formations of groups
2013
International audience; In a previous paper, the authors have shown that Eilenberg's variety theorem can be extended to more general structures, called formations. In this paper, we give a general method to describe the languages corresponding to saturated formations of groups, which are widely studied in group theory. We recover in this way a number of known results about the languages corresponding to the classes of nilpotent groups, soluble groups and supersoluble groups. Our method also applies to new examples, like the class of groups having a Sylow tower.; Dans un article précédent, les auteurs avaient montré comment étendre le théorème des variétés d'Eilenberg à des structures plus g…
ON SYLOW NORMALIZERS OF FINITE GROUPS
2013
[EN] The paper considers the influence of Sylow normalizers, i.e. normalizers of Sylow subgroups, on the structure of finite groups. In the universe of finite soluble groups it is known that classes of groups with nilpotent Hall subgroups for given sets of primes are exactly the subgroup- closed saturated formations satisfying the following property: a group belongs to the class if and only if its Sylow normalizers do so. The paper analyzes the extension of this research to the universe of all finite groups.
On conditional permutability and saturated formations
2011
Two subgroups A and B of a group G are said to be totally completely conditionally permutable (tcc-permutable) in G if X permutes with Yg for some g ¿ ¿X, Y¿ for all X ¿ A and Y ¿ B. We study the belonging of a finite product of tcc-permutable subgroups to a saturated formation of soluble groups containing all finite supersoluble groups. © 2011 Edinburgh Mathematical Society.
A question from the Kourovka Notebook on formation products
2003
[EN] It is shown in this paper that if X is a class of simple groups such that pi(X) = char X, the X-saturated formation H generated by a finite group cannot be expressed as the Gaschütz product F o G of two non-X-saturated formations if H = G. It answers some open questions on products of formations. The relation between omega-saturated and X-saturated formations is also discussed.